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AND MAXTMAT, FUNCTIONS

By
Iouwis H. Y. Chen

University of Singapore and Stanford University

1. Introduction and Notation.

An inequality involving a class of functions for weak martingales
and nonnegative weak submartingales is proved. Three special cases
are deduced, one of which generalizes and refines a result of Austin
(1966). As an application of the inequality, the special cases are
used to give easy proofs of Burkholder's (1966) L log L and Lp
(for 1 < p < 2) inequalities for the square function of a martingale
or a nonnegative submartingale. Although the inequality and the
specigl cases are proved for weak martingales and nonnegative weak sub-
martingales, they are also new for martingsles and nonnegative

submartingales.

Weak martingales and weak submartingales were first defined in
Nelson (1970). Examples of these can be found in Nelson (1970) and
Berman (1976). For ease of reference, we give the definition here.

A sequence f = (fl,f2,...) defined on a probability space is a weak
martingale (or weak submartingale) if f  1is integrable and
E(fn+l|fn) = (or > ) £ as. for n>1. Of course, a martingale
(or submartingale) is a weak martingale (or Weak'submartingale).

Throughout this paper, unless otherwise stated, f = (fi,f2,...)
will denote a weak martingale or a nonnegative weak submartingale.

As usual fo = 0. The difference sequence of f will be denoted by



( ) 0 - (8 &7 (£)

d = d_,e..). Also S _(f) = a S(f) = sup S (f

dl’ 07 o ] ) ( ) l_<_np<oo - )
= sup |f.]l, 5= sup £* and |f}_ = sw £l for
% o1<i<n T 1<n<o " P 1<n<e UP

1<p<x All functions are real-valued, Borel measurable and

defined on the real line.

2. The Main Results.

We first derive an identity.
Lemma 2.1. Let @ be g differentiable function whose derivative o' is
an indefinite integral of o" such that ¢(0) = 0'(0) =0, o' is a

nonnegative and even function, and such that for n > 1, fnw'(fn) is

+ -
integrable, Define Ki(x) (di-x) if x>0 and = (di-x) if

x<0,i>1. Then for n>1, cp(fn) is integrable, and

(2.1) Ep(f,) > % ij " (£; _+x)K; (x)ax
i=1 J-

0O
where equality holds in the weak martingale case. Furthermore for
i>1.
2
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i

@.2) fw K, (x)dx —

A2

Proof. Since the proof of (2.2) is easy, we omit it here. Since
x X
0(0) =9 (0) = 0, we have o' (x) =f o"(t)dt and o(x) =[O o' (t)dt.
O ) Py
It follows that o' is an odd function and ¢ an even function.

Therefore



||

| x|
(2.3) 0 < o(x) =fo o' (t)at = |xlo' (Ix]) fo t ¥ (t)dt

<x o' (x) .

The integrability of cp(fn) then follows from that of £ ' (fn). We
also need the integrability of dim'(fi_l) for i > 1. Since ¢" >0,

@' 1is nondecreasing. Therefore

Iy lor (g, Dxdey 41 < 1g51) < Ig5lor (15 ])
and

lg; 1o (lgy JDxde; o1 > e 1) < Ig S Mo (e 1)

Hence

il

la, ot (£; ) = la;lo(lg; )l
< g lor (e ;1) + g5 qlor (e, 4 1)

<leler (e l) +2lg, lor (g 1)

This implies the integrability of dim'(fi_l). We now derive (2.1).

In the weak martingale case, the left hand side of (2.1) is egual to

n
(2.1) Y Elo(fy)-o(f; ;)]
i=1
Il
= igl Elo(f, ) ~o(f; ;) -d;0" (£ ;)]
n a; (v
= igl E{fo ]o o (fi_l+x)dxdy} I(di >0)

g { [ ° [ ° (e, )y} 1(a, < 0)
+ E "(f, .+X I(d. <0) .
§=1 a, Jy P A } .
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In the nonnegative weak submartingale case, @'(fi_l) is nonnegative
and (2.4) holds with the first equality replaced by " >". Now
" > 0. So we may reverse the order of the doubly integration in

(2.4). By this, the extreme right hand side of (2.4) yields

n 0
13
h: j 9" (£, 90K, (x)dx
i=1 =00
and the lemms is proved.

In the case where f 1is a martingale or a nonnegative submartingale,
let T be a stopping time. By replacing £ in (2.1) by the stopped

martingale or nonnegative submartingale fT, we obtain

n 0

(2.5) Bp(f.) > Y E I(r>1) o" (f, .+x)K. (x)dx

n’ -, - i-1 i
i=1 =00

where again equality holds in the martingale case. If the differences

of f are mutually independent with zero means, o(x) = %> and

T = inf{n:lfnl > a] where a >0, then (2.5) immediately yields

Kolmogorov's two inequalities in the proof of the three seriés theorem.

Theorem 2.1. Let V¥' be a nonnegative and even function which is

nonincreasing on [0,0), and let ¥(x) =4};X ¥' (t)dt. Then
(2.6) ES® (£)y (£%) < 2 sup Ele (e |) .
n .

Proof. There is nothing to prove if the right hand side of (2.6) is
infinite. So we assume it to be finite. Iet Ki(x) be as in Lemms

2.1. It is mot difficult to see that, for i>1, £, .+x lies



between fi -1

o (x) = [ 0"(t)at = ¥(x) and o(x) =fx o' (t)dt. Then the inte-
0 0

and f, on (x: K;(x) >O0}. Nowlet ¢" =y',

grebility condition in ILemma 2.1 is satisfied and the lemma immediately

yields
2 L o
ES, () (£)) < 2Bo(r,) < 2Elf lw(le,|) <2 sup Elf l¥(l |)

where the second inequality follows from (2.3). By letting n -« and
applying Fatow's lemmg, the theorem is proved.
We now deduce from (2.6) three special cases.

Corollary 2.1l. We have

2
5= (£)
(2.7) E < allell; s
148%8 ~ L
52 (¢
(2.8) £ ) < o sup wle_|10g(14le,])
l+f* n n n
(2.9) E—-§—82 £) . 2 I£I®, 1<p<2
) ex2-p = p-1 " p’ =

-1
Proof. For (2.7), let V¥'(x) = (l+:x:2) 3 and for (2.8), let

v (x) = (1+]x] )-1. For (2.9), we first let ¥'(x) = (a+|x| )P"2 where
g >0 and then let a.J, 0 .

The inequality (2.7) generalizes and refines a result of Austin
(1966 ) who proved that the square function of an Ll-bounded martingale
is square integrable on any set where the maximal function is bounded

above.



3.  Applications.

In this section, we use Corollary 2.1 to give easy proofs of
Burkholder's L log I and ]L.p (for 1 <p<2) inequalities for
the square function of a martingale or a nonnegative submartingale.
These inequalities were first proved by Burkholder (1966). Since then
different proofs have been given. (See, for example, Gordon (1972),

Burkholder (1973), Chao (1973 ) and Garsia (1973).)

Theorem 3.1. Let f = (f]_’fg"") be a martingale or a nonnegative

submartingale. Then
oy 106",
(3.1) ES(f) < e(e—_l-) [1 + sgp E|.fn log .fn.] .

Proof. We shall use the following inequality which dates back to

Young (1913). It can also be found in Doob (1953).

+ + -
(3.2) a.logbsaloga.+bel for a>0 and b >0.

Replacing f; by %.'lfi in (2.8) of Corollary 2.1 where A = Bf*, we
obtain

Segf) -1
(3.3) E =—~ <2 sup E|f |log(1 ™ [f |)

ater T om0 B "

vhich by (3.2)

IN

+ -1
2 stJip[E|fn|log Ifnl + (\e) (>\+E|fn‘.)]

+
<21 + sup E|fn|log |_fn|] .



Now applying the Cauchy-Schwarz inequality to
2.y 1/2 L 1/2
Bs(r) = ECLEL) T ar™)
A+E*

and using (3.3) and the following inequality of Doob (1953) for sub-

martingales,
* e +
=70, < )L +ew El£,|10g72,[]

we obtain (3.1). This proves the theorem.

Theorem 3.2. ILet f = (fi’fé"") be a martingale or a nonnegative

submartingale. Then for 1<p <2,

G.4) Is (o)l < 2425 2qllel]

where p-l + q-l = 1.

Proof. Applying HOlder's inequality to

2 EI) l-=p
P_ oA (f)2 * 2
Is o)l = E(f*2~p) (£*P)

we obtain

1 1
5P 1-3p

2
p S™(£) *| D
Isee)ly < %*2-13) (£75)

which by (2.9) of Corollary 2.1

1 1
5P l-»Dp

< 2l )
= ‘p-l is) o) °



This together with the following inequality of Doob (1953) for sub-
martingales,

”f*”p S q||f||p for 1 <p<ow, p-l+q-l =1,

imply

1

o 1/2 1-%p 1/2 1/2
s(e)ll. < (= g fll. <2 .
s, < G3)7 q | llp <2/ qllf.lp

This proves the theorem.
The absolute constants in (3.1) and (3.4) seem to be the lowest ever
obtained. In (3.4), the order of magnitude of the constant as p »1 is

the same as that obtained by Burkholder (1973).
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